
N94- 33816

Storage Media Pipelining:
Making Good Use of Fine-Grained Media

Rodney Van Meter

ASACA Corporation
Tokyo, Japan

3-2-28 Asahigaoka, Hino-Shi, Tokyo, 191 Japan
rdv@alumni.caltech.edu

Abstract

This paper proposes a new high-performance paradigm for accessing removable media such as
tapes and especially magneto-optical disks. In high-performance computing, striping of data
across multiple devices is a common means of improving data transfer rates. Striping has been
used very successfully for fixed magnetic disks, improving overall system reliability as well as
throughput. It has also been proposed as a solution for providing improved bandwidth for tape
and magneto-optical subsystems. However, striping of removable media has shortcomings,
particularly in the areas of latency to data and restricted system configurations, and is
suitable primarily for very large I/Os. We propose that for fine-grained media, an alternative

access method, media pipelining, may be used to provide high bandwidth for large requests
while retaining the flexibility to support concurrent small requests and different system
configurations. Its principal drawback is high buffering requirements in the host computer or
file server.

This paper discusses the possible organization of such a system, including the hardware

conditions under which it may be effective, and the flexibility of configuration. Its expected
performance is discussed under varying workloads, including large single I/Os and numerous
smaller ones. Finally, a specific system incorporating a high-transfer-rate magneto-optical
disk drive and autochanger is discussed.

I. Introduction

"Life does not glve Itself to one who trles to keep all its advantages at once."
Leon Blum

For Dr. Klm "Wombat" Korner, 1953-1993, a good and marvelously unconventlonal frlend and
teacher.

We propose that, for fine-grained media, a new access method, which we have dubbed media

plpellnlng, can be used to dramatically increase the aggregate bandwidth available. Media

pipellning operates much like plpelining in a CPU with multiple functional units I,
overlapping multiple requests (or portions of a single large request) to improve system
throughput and resource utilization. Many of the analysis techniques applied to processor
pipelines, including space-time diagrams and pipeline reservation tables can usefully be
applied to media pipelining.

Pipelining can benefit single large Jobs in a manner comparable to striping, while retaining
the flexibility to accommodate smaller requests that striping may sacrifice. It also easily
supports different system configurations, allowing the system to operate effectively with any
number of drives. This flexibility also means that dynamically changing workloads can be

handled effectively. The principal drawback to media plpelining Is high buffering
requirements in the file server or fflesystem cache to achieve maximum throughput.

303

Section2 presentssomedefinitionsfor discussingthe performanceof such systems.Section3
briefly explains striping for removable media. We present a contrasting discussion of
pipelinlng in Section 4. Section5 briefly covershost requirements for pipelining. Section 6
describesin detail onepossibleimplementation,andsection7 presentsour conclusions.

Wedefinegranularity as the ratio of the capacity of a medium to its transfer rate. The result Is
the amount of time it takes to read the entire medium. Some removable media have a very high

capaclty-to-bandwidth ratio. As an example, the ASACA AMD-1340NS HSMO disk drive, with
a medium capacity of 600 MB per side and a transfer rate of 10 MB/s can read an entire medium
in under one minute, which Is approximately 4 times the time necessary for an autochanger to

exchange the medium and a drive to perform its load and Unload operations. We refer to such
media as fine-grained media, as opposed to those whose read times may be on the order of
hours (for example, the new optical tape has a capacity of one terabyte per reel, and a transfer

rate of 3 MB/s, making a granularity of 3.3xi05 seconds, or more than 900 hours), which we

call co_.gralned media. Some example granularities of both common and experimental
removable media are summarized _ table I (the capacities for HSMO and ISO MO are for one
side of a double-sided disk). (Note that this simple chart does not take into account drive type
and host interface, which may result in different apparent granularities for the same medium.)

It is easy to see that granularity varies by orders of magnitude. The impact of this feature on

system design has not been fully explored.

i

Media Type

3480 tape
T- 120

tape
D-2 S tape

HSMO dIsk

ISO MO disk

optical tape

Capacity
(MB)

2OO

14,000

25,000
600

300

1,000,000

Transfer
Rate

(MB / s)
2

Granularity
(see)

I00

3 2,700

15

10

0.6

1,700

60
5OO

330,000

Table I: Example Granularltles of Removable Medla

It Is also sometimes desirable to talk about the effects of media granularity on the total

performance of an autochanger system. In this case the Important measure is the
(dimensionless) ratio of the media granularity divided by the cartridge exchange time, G/tx.

2. Assumptions and Definitions

We will dIscuss both striping and plpelining in the context of two different access patterns. The
first Is for an assumed linear scan of a very large (>>Cm) dataset. It will be analyzed primarily

for its steady-state behavior rather than startup or latency. The principal metric Is rt, the total

apparent throughput for a complete system.

The second workload is small requests located randomly in the entire available dataspace. In

any removable-media system, with an average request size O(rm*tr), both p and rt are low; a
better metric is Xn, the number of requests that can be serviced in a given time. Flexibility and

the ability to support dynamically varying workloads will also be discussed.

We assume throughout this paper that the number of media in use is much larger than the

largest possible stripe set; typically hundreds of media in a single autochanger (or "cart
machine"). We further assume that it is desirable for this entire collection of media to be

composed into a single dataspace (or a small number of large dataspaces). For fine-grained
media thIs appears to be a reasonable assumption, freeing applications from managing data in
chunks that may be unnatural and result in wasted capacity. However, this does force fixed

addressing, as demonstrated later, making compressing media or other media with highly

304

variable capacity poor candidates for pipelining. This also essentially constrains the
managementof the mediato automatedhandlers, but fine-gralnedmedia are unlikely to be
used for human-handleddataset import/export anyway. While removing or adding media
from/to the middle of the dataspace is impossible once the addressing is fixed, simple
expansion is straightforward -- new addressesare allocated past the end of the existing
dataspace.

Ifa userprocess is transferring very large amounts of data, >> Cm, a fine-grained system is to a

certain extent handicapped. The apparent aggregate transfer rate using one drive, r a, is limited

to rm * p, where

p = G/(G + tx) for tx = tu + tr + tl + ts.

It is clear that for coarse-grain media this ratio p is close to I, meaning that over the long term
for very large requests (>>c m) that the cost of media exchanges is negligible. However, for fine-

grained systems such as the ASACA HSMO, p may be significantly less than one. Thus, low
granularity would appear to be a significant handicap; can It be turned into an advantage?

Abbr..

B

Cm

Cs

P

rm

rs

rp
ra

rt

tm

tl

tu

ti

td
ts

tr

tx

nb

Description
buffer space necessary
capacity of a single medium

capacity of a stripe set = S * cm

percentage of time a drive spends
transferring data
transfer rate of a single drive
transfer rate of a stripe set

transfer rate of a pipeline configuration

aggregate transfer rate including media
exchange times
total throughput for a multi-drive system

robot cartridge move time
drive load time

drive unload time

time for the robot handier to actually
insert/remove a medium
data transfer time

seek time

robot round trip time, perhaps 2*tm

time to exchange a medium, including
eject, setup, and seek
number of blocks per medium

nd
S

Sb
Ss

Sp
Xn

G

number of drives in system

striping factor (ignoring ECC additions)
block size (in bytes) of media

logical block size for stripe set = S * sb

logical block size for pipeline set = sb

request (transaction) rate (dimension
#requests/time)
granularity = Cm /rm (dimension Is time)

Table 2: Deflnltlons

305

3. The Shortcomings of Striping

One possible way to increase system throughput for large requests is to stripe the data across
multiple media, increasing the available data size and multiplying the data rate. This
approach is fine for fixed disks with stable configurations, but in a more dynamic system with
removable media it presents severe management and use problems and may substantially
increase the vulnerability of the user's data to access problems or media failures.

Hard disk systems that perform some form of striplng must take steps to ensure the integrity of
the data. The simplest approach, simply copying the data across two disks, improves the safety
of the data but does not help either the transfer rate or the capacity. Larger RAID systems
improve all of the above by using more than two disks and designating one or more disks to
store error correction information 2.

Striping of data across two or more removable media is being investigated 3. The principal
problem with striping of removable media, especially in a robotic system designed to reduce
the latency of access to the data, is that the whole set (perhaps, depending on the management
scheme, minus the error control tape) must be on-line at once to read or write. Figure] shows
the logical block layout of two stripe sets laid back to back as a single address space. A minor
consideration is that the block size also goes up by a factor of S.

medial 0 I I 2 I"" nb-11 mediaS+I o] I 12 I," nbll

media2[0 I 121"" nb-I] mediaS+2 01112]-.. nb-11
6 •

4P •

media S 0 1 I 2 l"" [nbll media 2S 011 l 2 I"" nb-11

loglcal logical Ioglcal logical

block 0 block nb-1 block n b block 2nb-1

Figure I: Logical Block Layout for Striped Media

Assuming intra-cart machine striping, bringing a stripe set online involves several operations
by the robot to fetch multiple media, and forces the drives to sit idle while other drives in the
set are loaded. Also, ffthe set consists of S striped tapes, if only S-I drives are available at the
time, the dataset may be unavailable. In a striped system drives must generally be allocated
and used in sets of size S, meaning that the addition of a single drive does little good but the

removal of a single drive may prevent access to data.

For a single cart machine servicing small requests, the maximum rate of requests that can be
serviced, Xn, is 1/(tr * S).

Inter-cart machine striping can be used to eliminate the increased latency for media access and
increase the throughput of the system for small requests, but this again is very limiting in
system configuration (requiring S cart machines exactly) and increases the vulnerability of
the system to robot failures. It may be effective for small autochangers (10-tape stackers, for
example) but becomes a very expensive solution for larger autochangers.

3O6

Figure2 showsthe access timing for a 4-way intra-cart machine stripe set.

Drivel

Drive2

Drive3

Drive4

E22CB

[] robot cartridge exchange

[] drive load/unload time

• data read/write

time

Figure 2: Striping of Removable Media

4. An Alternative Solution

One answer which appears to address some of the problems of striping for fine-gralned media
is media PiI_linlng. It can use a higher percentage of available drive bandwtdth, increasing
total throughput for large requests, and retain the flexibility to accommodate small requests.

The logical block layout for media pipelining can be the "obvious" one, with blocks counting up
on the first medium in the system and continuing consecutively across media boundaries, as

shown in figure 3. A key assumption of this paper, as mentioned earlier, is the desirability of
maintaining a single addressable space (the dataspace).

I011 121"-Inb-il ["011 121""lnb-ll
÷ ÷

logical logical logical logical

block 0 block block block

rib-1 nb 2rib-1

Figure 3: Logical Block Layout for Pipellned Media

The concept of media pipelining comes into play when requests move into the range of the
media size c m, on up to the terabyte range. How can multiple drives be used to increase th_

speed at which such requests are serviced? The simple answer is to recognize that the request
spans a disk boundary, and preload the next disk in the request and have it ready to read when
the first disk completes. This in itself is a simple form of plpelining, with the loading of a disk
overlapping the reading of another. However, it commits two drives to the read and provides
the effective bandwidth of one full drive. This we call linear pipelining (our definition is

307

somewhatdifferentfrom that of Hwangand Briggs).Linearpipelining is illustrated in figure 4.
Even in fine-gralnedsystems,twodrivesshouldbesufficient to providelinearpipelining.

Drivel

Drive2

time

I--I robot cartridge exchange

I drive load /unload time

m data read/write

Figure 4: Linear Plpellnlng

It is possible, with a little care and appropriate driver software, to increase the drive
utilization with pipelinlng by allowing the second drive to begin reading as soon as it comes on
llne. This we refer to as superUnear pipeUnlng, as in figure 5. The diagram shows the

overlapping reads, and below, a graph of the amount of data delivered to the application,
assuming that the application is infinitely voracious but insists on data being delivered in
order. It can be seen that both drives run at p efficiency, resulting in a total sustained

throughput rt = 2 * ra.

The data that is read off of the second medium before the end of the first medium must be

buffered (represented graphically as the gray area above the data delivered curve). It can be seen
that this peaks right before the end of the first medium. The maximum amount of buffer space
necessary is B = (G - tr) * rm. It should be readily apparent that this requirement can be reduced

by having the system pause before starting the transfer from the second disk, reducing the total
overlap. This obviously delays somewhat the delivery of the data, but may be acceptable
depending on the rate at which the application is truly consuming data (in very long reads, the

impact on average throughput would be negligible anyway). The most efficient configuration is
of course device- and system-dependent.

As the size of the request grows, the full resources of the system can be brought to bear on the

problem. For reads of N * Cm or larger, we reach steady-state transfer rates utilizing the

maximum percentage of the bandwidth of each drive.

A key feature of pipelining is its flexibility of configuration, allowing dynamically varying
drive allocation depending on user needs and work load. For example, in a four-drive system,
the first user to begin using the system may receive data at the full transfer rate, Just as in a

striped system. A second user entering the striped system may find his access to his data
blocked, while the pipelined system can reconfigure (presumably on a medium boundary in the

first transfer) dynamically, reallocating the drives 2-2 or 3-1 in favor of either user, allowing
both to continue working in a manner very analogous to dynamic multiprocessor

configurations. The system should autoconflgure, allowing up to as many users as there are

308

drives available (at one drive per user, this would be sublinear pipelining, equivalent to a
"stalled" processorpipeline).It is not evena requirementthat the different operations be the
same kind of operation; one may be an excellent candidate for plpelining, one may be a
concentrated series of operations within a single medium, while another is randomly placed
reads and writes throughout the entire dataspace.

Drivel

Drive2

total
bytes

[] buffered data • delivered data
time

Figure 5: 2-Way Superlinear Pipellnlng

The pipeline overlap can be decreased when necessary (i.e. when the host cannot afford such a
large buffer) for the simple tradeoff of reduced throughput for pipelined requests.

The system hardware configuration is extremely flexible with respect to the number of drives
in the system. Unlike a striped system, a pipelined system can run comfortably with any
number of drives, allowing drives to be moved, allocated, or maintained without necessarily
forcing the unavailability of the entire system.

For small reads and writes (where "small" in this context may be less than a few hundred

megabytes), << Cm, the probability of the entire read residing on a single medium is high. In
this case, the operation will be dominated by the media load time rather than the transfer time

(as mentioned above, the load time becomes substantially longer in a striped system), negating
any advantage in improved transfer rate from a stripe set. A single drive may be allocated to
the request, leaving the other drives free for other operations, thus allowing the system to
concurrently process as many requests as it has drives.

5. Operating System and File System Requirements

The operating system and file system have numerous demands made of them in a pipelined
system. Both must be able to address large spaces. The device driver must be able to support
multiple physical devices and manage and reassemble data as it comes in. Naturally the
system should support transfers at such high rates.

If the requests to be plpelined arrive at the driver as a linear collection of smaller requests
rather than a single huge request, the driver should still be able to pipeline the requests by
prefetching data. If the file system provides "hints" it eases the process of determining when a

3O9

prefetchand pipelinesetupwill beworth the extra trouble. As discussedabove,the system
must be able to provide adequate buffer space, which should be readily available in a
configurationwith a minisupercomputeras a file serverfor a supercomputer.

High-speedinterfacesarerequiredto makesucha systemwork. HIPPIand SCSI-2and SCSI-3
areexamples.ThepeaksupportedI/O burst rate (sumfor the I/O bussesused for pipelining;
thereis no requirementthat all thedrivesbeon thesamebus)mustbeat leastnd * rm in order
to maximizepipellning.

6. A Specific MO System

Evaluating real-world systems is of course substantially more complex than the abstract
concepts presented above. Probably pipelinlng is best suited to removable disks, since their
capacity is fixed, although uncompressed 3480 tape, with its low granularity, is also a
possibility.

Asaca has developed the world's fastest magneto-optical disk drive, the AMD-1340N, 4 with a
native data transfer rate of 12.24 megabytes/second, and a cartridge capacity of 1.2 GB (600
MB/side). These represent, respectively, twenty times and two times the values for most ISO-
standard 5.25" MO drives. The speed advantage comes primarily from ASACA's 4-beam head
technology, in which two heads each focus four lasers, for a total of eight beams lifting data off
the disk concurrently. This tremendous speed improvement results in an entire side of a disk

being readable in only 50 seconds. Using the SCSI-2 fast-wide interface, sustained transfer
rates of approximately 10 MB/s are expected, and this is the number used throughout this

paper.

The Asaca ADL-450 HSMO library contains 450 disks, 900 sides, 14,790 sectors of 40,448 bytes
each, for a total capacity of 538 GB. It can hold up to four AMD-1340NS drives. Its potential in
mass storage has already been discussed 5.

With the ASACA cart machine, the first disk comes on-llne in approximately 15 seconds, and

the second in approximately 23. The disk handler can hold two disks, meaning that during
steady-state striping operations, the handier can prefetch the next disk while a drive is
finishing a read and ejecting the disk, and have the second disk ready to load when the first is
ejected. Thus, although the round-trip exchange time tr is 15 seconds, the load time t I is 8
seconds, the unload time t u is 3 seconds, and the insert time is approximately two seconds, a

new disk can be online in approximately 15 seconds tx = tu + tl + 2 * til.

For p = G/(G + tx), using G = 60, p = 0.8, so during steady-state pipelining, we can expect to receive

approximately 80% of the drive bandwidth.

Assuming that the driver makes the intelligent choice of mounting the disk with the most data
on it first (a pipelining reordering operation), the worst case for a one gigabyte read is when the
data is split 500 MB each on two disks. In that case, the read should be completed in 50 seconds
of read plus the 23 to mount the disks, for an average aggregate throughput of 12 MB/s.

This transfer rate amounts to an aggregate of 32 MB/sec. across the four drives in a complete

system. The difficulty is in managing the data, drives, and robot to provide fast access in a
relatively transparent manner. A crucial part of the problem is coordinating multiple drives
so that a user may take the best advantage of all the resources the system has to offer.

7. Conclusion and Future Work

We have presented here a new concept, the granularity of media, and shown how fine-grained
media can be used in a method called media pipelining, which offers some advantages over

striping for fine-gralned removable media. It offers additional flexibility and improved
response time compared to striping for small-request and dynamic workloads. For very large

310

requests,it can offerimprovedthroughput comparedto striping at the cost of high buffering
requirements.

Further work calls for simulations and an implementation to verify predicted performance,
increasedformalizationof the analyticmodel,and possiblyextensionsto the conceptto allow
plpeliningto beusedfor coarse-grainmediaas well. The interaction of media plpelining with
the host operatingsystemalsoofferschallengingwork.

IHwang,KaiandBriggs,Faye'A., ComputerArch#ecture and Parallel Processing, McGraw-Hill, 1984, pp. 145-
212.

2David A. Patterson, Garth Gibson, and Randy H. Katz, "A Case for Redundant Arrays of Inexpensive Disks" Proc.
ACM SIGMOD, June 1988.

3Drapeau, Ann L. and Katz, Randy H., "Striped Tape Arrays," Proc. Twelfth IEEE Symposium on Mass Storage
Systems, Monterey, CA, April 1993.
4Nakagomi, Takashi et al, "Development of High Speed Magneto-optical Disk Drive Using 4 Beam Optical Head,"
1EEE Translation J. on Magnetics in Japan, Vol. 6, No. 3, p. 250, March 1991.
5Nakagomi, Takashi, et all, '_Re-Defining the Storage Hierarchy: An Ultra-Fast Magneto-Optical Disk Drive," Proc.
Twelfth IEEE Symposium on Mass Storage Systems, Monterey, CA, April 1993.

311

f

The Trend to Parallel, Object-
Oriented DBMS

David J. DeWitt

Professor and Romnes Fellow

Computer Sciences Department

University of Wisconsin

1210 W. Dayton Street

Madison, Wl 53706

Phone: (608) 263-5489 / (608) 262-1204

FAX: (608) 265-2635

Background

Supercomputers users and vendors are finally
discovering the importance of I/O!

Recently I read a paper titled "Satisfying the I/O

Requirements of Massively Parallel
Supercomputers"

• Nice paper, but not a single reference to any
work in the parallel database system field

• I found this:

_-mNzJ'.BtWNG PAE;E BLANK NOT Ffl.l_Pt'.l
313

AMAZING!

Why Amazing?

Parallel DBMS community has been working on
this problem for 15 years and essentially has it
solved

Teradata has systems in the field with over 300
processors and 1000 disk drives!

Other vendors include NCR/Sybase, Tandem,
IBM SP2, & DEC (soon)

All vendors use the same basic architecture

None of the supercomputer vendors use it.

314

f

What am I going to talk about?

I wondered the same thing when I saw the
program for this conference

f
Talk Outline

• Hardware and software architectures used by
today's relational DBMS products

• DBMS trends - the transition from relational to
object-oriented

• What is an object-oriented (OO) DBMS?

• OODBMS and standards such at NetCDF

• Future OODBMS directions

• 1 slide sales pitch

315

Database Systems Today

• Relational data model and SQL dominate

° Targeted at commercial applications

• A relational database: set of relations

• A relation: a set of homogenous tuples

Telephone_Book _l_lRme Addr==_n Numh_
Jones 110 Main St 255-4834
Smith 2164 Lake Lane 238-5936
Smith 5 Roby Rd 746-0192

SQL used to create, update, and query

SELECT Number

FROM Telephone_book
WHERE Name = "Smith"

7_

f

Relational Database Systems

• SQL is easy to optimize and parallelize

• Terabyte databases, consisting of billions of
records, are becoming common

• Databases of this size require the use of

parallel processors

• Teradata and other commercial parallel DBMS

employ what is termed a shared-nothing
architecture

316

I III I

Shared-Nothing

Each memory and disk is owned by some
processor that acts as a server for that data

8_::::

Piiiiiiiiiiiiii4JiiP!iljilIii!ii!iiiiiiiljiiiiiiiiiiiiii!i!iillIii!i!i!iii!miiiiiiiiiiii!iiiii!il
• Teradata, NCR 3600, Tandem, IBM SP2

• Actual interconnection network varies: trees,
hypercubes, meshes, rings, ...

Relational DBMS Parallelism

• 3 key techniques: pipelining, partitioned
execution, & data partitioning

Pipelined parallelism * Partitioned execution

TelephoneBook Relation

I l mnn 10 J

317

Relational DBMS Summary

• Shared-nothing approach has proven to scale
very successful providing both linear speedup
and scaleup on IIO intensive applications

• The largest Teradata systems have over 300
processors and 1000 disk drives (1 terabyte)

• While NASA has lots of satellite data, K-Mart
and WalMart have lots of cash registers!

Despite all the talk about an I/O bottleneck, the
vendors supplying parallel processors to the
scientific community are not following suit.

• What are they doing?

Nodes (Shared-Disk)

Each processor has a private memory and
access to all disks

CM-5, Intel Paragon, Cray T3D, IBM 3090

DBMS community have rejected such
architectures

- coordinating access to shared data is complex

... extra cost required for I/O nodes and their network

318

 Common Gripes about Shared-Nothing
• Packaging problems

- total nonsense. Tersdata Is sufficient proof

- by 2000, I", 1 glgsbyte drives will be common

• Interference with appllcation code
- Assume:

,, 50 MIP cpu

,, 20 ms. to do a disk I/0

,, Each "remote" disk request consumes 3000 instructions
locally (1000 to accept message, 1000 to start I/0, 1000 to
send page back to requestor)

- So every 20 ms., 3000 instructions are stolen from
application. These 3000 instructions account for 0.3% of the
available CPU cylesll!

• The future of parallel computing may be
commodity computers connected by
commodity networking technology (e.g. ATM)

Another Observation

DB community has totally accepted message
passing for both parallel computation & parallel
I/O

• Scientific community has accepted message
passing as the standard communication mode
(though HPF may hide a lot of ugly details)

• But, is holding on to a "shared-disks"
architecture for the parallel I/O system

J

319

Talk Outline

• Hardware and software architectures used to

today's relational DBMS products

• DBMS trends - the transition from relational to

object-oriented

What is an object-oriented (OO) DBMS?

OODBMS and standards such at NetCDF

Future OODBMS directions

1 slide sales pitch

_on from Relational to

Object-Oriented

Why?

Relational DBMS:

- Modeling capabilities too limited:

,, Tuples (records) of base types only!

,, No arrays let alone polygons or polylines

,, No nested tuples or structure-valued attributes

-Application interface (i.e. SQL with cursors)
is simply wrong for manipulating scientific

or CAD data

,, CAD applications love to chase pointers around

- No support for tertiary storage

320

What is an Object-Oriented DBMS?

• The marriage of a modern programming
language such as C++ and a modern DBMS.

• From the programming language world:

- Rich type system Including classes with encapsulation and
Inheritance

- Computational completeness

• From the DBMS world:
- Persistence

- Bulk types (sets, lists)

- Transactions (concurrency control and recovery servlces)

- Associative queries (balance < $100)

• Transparent Access to Persistent Objects

17 J

f
Example

Given the following type definition

class raster_data {
int time;

int frequency;

float image[4096][4096];
}

Can declare persistent variables of this class:

persistent raster_data X, Y;

Transparent access to data on disk:

for (i=0;i<4096 ;i++)

for (j=0;j<d096;j++)

Y[i]U] = f(X.image[i][j]);

A year's worth of data:

persistent raster_data GeosDataSst[365];

18 J

321

f
OODBMS & Standards like NetCDF

• Data model provided by a typical OODBMS is
much more general than that provided by a
standard

- Typical OODBMS, in addition to arrays and record==,
provide sets, lists, and relationships as type constructors

• Transparent access to persistent data makes
manipulation of data residing on secondary
and tertiary storage trivial

- Current products have sufficient performance to satisfy
even the most demanding CAD applications

• Persistent objects are strongly typed with their

type descriptors stored as persistent objects
in the database

19j

Talk Outline

• Hardware and software architectures used to

today's relational DBMS products

• DBMS trends - the transition from relational to

object-oriented

• What is an object-oriented (OO) DBMS?

• OODBMS and standards such at NetCDF

• Future OODBMS directions

• 1 slide sales pitch

_J

322

f
Future OODBMS Directions

• Standardization via either ODMG or SQL3

•. Integrated support for tertiary storage

• Extension to parallel processors

- Current products architected for client-server environments

- Only "small" databases supported: 10s of gigabtyes and
not tersbytes

- Two possible directions

,, Relational products will adopt a richer type system such as
SQL3

,, OODBMS products will be extended to operate on parallel
processors

,, Joint project between KSR and Intellitic to parallelize
Matisse is the first such effort

Parallel-Sets (ParSets)

• Proposed by Kilian, basis of Matisse/KSR effort

• Employs a data-parallel approach to object-
oriented parallel programming

• ParSets extend set type constructor as follows:
- ParSers are partitioned across multiple processors/disks to

facilitate CPU and I/0 parallelism

- Provide 4 basic operations:

,, Add()

,, Remove()

,, SetApplyO - invokes a method on all the objects in parallel

,, Reduce() function - calculates a single value from all objects
in the ParSet

• Most promising proposal to date. Can be
extended to other bulk types such as arrays,
lists, trees, etc.

323

Sales Pitch - What we are doing

• Shore - public domain, object manager (ARPA)

- Data model based on ODMG standard

- Support for client-server end parallel processors

- Parallelism via ParSsts

• Paradise (NASA)

- Parallel information system for managing large EOSDIS
data sets

- Uses GEO as a front-end

- Uses Shore object manager for storing persistent data

Conclusions

• Parallel relational database systems are a

proven technology with solutions to the I/O
bottleneck problem

• Future is likely to witness a merger of
technologies developed for relational and

object-oriented database

• The use of object-oriented database systems
with typed persistent objects reduces the
needs for restrictive standards such as NetCDF

• Extensions to HPF to provide transparent

access to persistent arrays (termed "out-of-
core" arrays) are on the drawing boards

324

